
New Regularized Algorithms for Transductive Learning

Partha Pratim Talukdar and Koby Crammer

Computer & Information Science Department
University of Pennsylvania

Philadelphia, PA 19104
{partha,crammer}@cis.upenn.edu

Abstract. We propose a new graph-based label propagation algorithm for trans-
ductive learning. Each example is associated with a vertex in an undirected graph
and a weighted edge between two vertices represents similarity between the two
corresponding example. We build on Adsorption, a recently proposed algorithm
and analyze its properties. We then state our learning algorithm as a convex
optimization problem over multi-label assignments and derive an efficient algo-
rithm to solve this problem. We state the conditions under which our algorithm is
guaranteed to converge. We provide experimental evidence on various real-world
datasets demonstrating the effectiveness of our algorithm over other algorithms
for such problems. We also show that our algorithm can be extended to incorpo-
rate additional prior information, and demonstrate it with classifying data where
the labels are not mutually exclusive.

Key words: label propagation, transductive learning, graph based semi-supervised
learning.

1 Introduction

Supervised machine learning methods have achieved considerable success in a wide
variety of domains ranging from Natural Language Processing, Speech Recognition to
Bioinformatics. Unfortunately, preparing labeled data for such methods is often expen-
sive and time consuming, while unlabeled data are widely available in many cases. This
was the major motivation that led to the development of semi-supervised algorithms
which learn from limited amounts of labeled data and vast amounts of freely available
unannotated data.

Recently, graph based semi-supervised algorithms have achieved considerable at-
tention [2, 7, 11, 14, 17]. Such methods represent instances as vertices in a graph with
edges between vertices encoding similarities between them. Graph-based semi-supervised
algorithms often propagate the label information from the few labeled vertices to the
entire graph. Most of the algorithms tradeoff between accuracy (initially labeled nodes
should retain those labels, relaxations allowed by some methods) with smoothness (ad-
jacent vertices in the graph should be assigned similar labels). Most algorithms only
output label information to the unlabeled data in a transductive setting, while some
algorithms are designed for the semi-supervised framework and build a classification
model which can be applied to out-of-sample examples.

Adsorption [1] is one such recently proposed graph based semi-supervised algo-
rithm which has been successfully used for different tasks, such as recommending
YouTube videos to users [1] and large scale assignment of semantic classes to enti-
ties within Information Extraction [13]. Adsorption has many desirable properties: it
can perform multiclass classification, it can be parallelized and hence can be scaled to
handle large data sets which is of particular importance for semi-supervised algorithms.
Even though Adsorption works well in practice, to the best of our knowledge it has
never been analyzed before and hence our understanding of it is limited. Hoping to fill
this gap, we make the following contributions in this paper:

– We analyze the Adsorption algorithm [1] and show that there does not exist an
objective function whose local optimization would be the output of the Adsorption
algorithm.

– Motivated by this negative result, we propose a new graph based semi-supervised
algorithm (Modified Adsorption, MAD), which shares Adsorption’s desirable prop-
erties, yet with some important differences.

– We state the learning problem as an optimization problem and develop efficient
(iterative) methods to solve it. We also list the conditions under which the opti-
mization algorithm – MAD – is guaranteed to converge.

– The transition to an optimization based learning algorithm provides a flexible and
general framework that enables us to specify a variety requirements. We demon-
strate this framework using data with non-mutually exclusive labels, resulting in
the Modified Adsorption for Dependent Labels (MADDL, pronounced medal) al-
gorithm.

– We provide experimental evidence demonstrating the effectiveness of our proposed
algorithm on various real world datasets.

2 Adsorption Algorithm

Adsorption [1] is a general algorithmic framework for transductive learning where the
learner is often given a small set of labeled examples and a very large set of unlabeled
examples. The goal is to label all the unlabeled examples, and possibly under the as-
sumption of label-noise, also to relabel the labeled examples.

As many other related algorithms [17, 12, 5], Adsorption assumes that the learning
problem is given in a graph form, where examples or instances are represented as nodes
or vertices and edges code similarity between examples. Some of the nodes are associ-
ated with a pre-specified label, which is correct in the noise-free case, or can be subject
to label-noise. Additional information can be given in the form of weights over the la-
bels. Adsorption propagates label-information from the labeled examples to the entire
set of vertices via the edges. The labeling is represented using a non-negative score for
each label, with high score for some label indicating high-association of a vertex (or its
corresponding instance) with that label. If the scores are additively normalized they can
be thought of as a conditional distribution over the labels given the node (or example)
identity.

More formally, Adsorption is given an undirected graph G = (V,E,W), where a
node v ∈ V corresponds to an example, an edge e = (a, b) ∈ V × V indicates that the

label of the two vertices a, b ∈ V should be similar and the weight Wab ∈ R+ reflects
the strength of this similarity.

We denote the total number of examples or vertices by n = |V | , by nl the number
of examples for which we have prior knowledge of their label and by nu the number of
unlabeled examples to be labeled. Clearly nl + nu = n. Let L be the set of possible
labels, their total number is denoted by m = |L| and without loss of generality we
assume that the possible labels are L = {1 . . .m}. Each instance v ∈ V is associated
with two row-vectors Yv, Ŷv ∈ Rm+ . The lth element of the vector Yv encodes the
prior knowledge for vertex v. The higher the value of Yvl the stronger we a-priori
believe that the label of v should be l ∈ L and a value of zero Yvl = 0 indicates
no prior about the label l for vertex v. Unlabeled examples have all their elements set
to zero, that is Yvl = 0 for l = 1 . . .m. The second vector Ŷv ∈ Rm+ is the output
of the algorithm, using similar semantics as Yv . For example, a high value of Ŷvl

indicates that the algorithm believes that the vertex v should have the label l. We denote
by Y, Ŷ ∈ Rn×m+ the matrices whose rows are Yv and Ŷv respectively. Finally, we
denote by 0d the all-zeros row vector of dimension d.

2.1 Random-Walk View

The Adsorption algorithm can be viewed as a controlled random walk over the graph
G. The control is formalized via three possible actions: inject, continue and
abandon (denoted by inj, cont, abnd) with pre-defined probabilities pinj

v , pcont
v , pabnd

v ≥
0 per vertex v ∈ V . Clearly their sum is unit: pinj

v + pcont
v + pabnd

v = 1. To label any
vertex v ∈ V (either labeled or unlabeled) we initiate a random-walk starting at v fac-
ing three options: with probability pinj

v the random-walk stops and return (i.e. inject)
the pre-defined vector information Yv . We constrain pinj

v = 0 for unlabeled vertices
v. Second, with probability pabnd

v the random-walk abandons the labeling process and
return the all-zeros vector 0m. Third, with probability pcont

v the random-walk continues
to one of v’s neighbors v′ with probability proportional to Wv′v ≥ 0. Note that by def-
inition Wv′v = 0 if (v, v′) /∈ E. We summarize the above process with the following
set of equations. The transition probabilities are,

Pr [v′|v] =

Wv′v∑

u : (u,v)∈E

Wuv

(v′, v) ∈ E

0 otherwise

. (1)

The (expected) score Ŷv for node v ∈ V is given by,

Ŷv = pinj
v ×Yv + pcont

v ×
∑

v′ : (v′,v)∈E

Pr [v′|v] Ŷv′ + pabnd
v × 0m . (2)

2.2 Averaging View

For this view we add a designated symbol called the dummy label denoted by ν /∈ L.
This additional label explicitly encodes ignorance about the correct label and it means
that a dummy label can be used instead. Explicitly, we add an additional column to all

Algorithm 1 Adsorption Algorithm
Input:
- Graph: G = (V,E,W)
- Prior labeling: Yv ∈ Rm+1 for v ∈ V
- Probabilities: pinj

v , pcont
v , pabnd

v for v ∈ V
Output:
- Label Scores: Ŷv for v ∈ V
1: Ŷv ← Yv for v ∈ V {Initialization}
2:
3: repeat

4: Dv ←

X
u

WuvŶuX
u

Wuv

for v ∈ V

5: for all v ∈ V do
6: Ŷv ← pinj

v ×Yv + pcont
v ×Dv + pabnd

v × r
7: end for
8: until convergence

the vectors defined above, and have that Yv, Ŷv ∈ Rm+1
+ and Y, Ŷ ∈ Rn×(m+1)

+ . We
set Yvν = 0, that is, a-priori no vertex is associated with the dummy label, and replace
the zero vector 0m with the vector r ∈ Rm+1

+ where rl = 0 for l 6= ν and rν = 1. In
words, if the random-walk is abandoned, then the corresponding labeling vector is zero
for all true labels in L, and an arbitrary value of unit for the dummy label ν. This way,
there is always positive score for at least one label, the ones in L or the dummy label.

The averaging view then defines a set of fixed-point equations to update the pre-
dicted labels. A summary of the equations appears in Algorithm 1. The algorithm is run
until convergence which is achieved when the label distribution on each node ceases to
change within some tolerance value. Since Adsorption is memoryless, it scales to tens
of millions of nodes with dense edges and can be easily parallelized [1].

Baluja et. al. [1] show that up to the additional dummy label, these two views are
equivalent. It remains to specify the values of pinj

v , pcont
v and pabnd

v . For the experiments
reported in Section 6, we set their value using the following heuristics (adapted from
Baluja et. al. [1]) which depends on a parameter β which we set to β = 2. For each
node v we define two quantities: cv and dv and define

pcont
v ∝ cv ; pinj

v ∝ dv .

The first quantity cv ∈ [0, 1] is monotonically decreasing with the number of neighbors
for node v in the graph G. Intuitively, the higher the value of cv , the lower the number
of neighbors of vertex v and higher the information they contain about the labeling
of v. The other quantity dv ≥ 0 is monotonically increasing with the entropy (for
labeled vertices), and in this case we prefer to use the prior-information rather than the
computed quantities from the neighbors.

Specifically we first compute the entropy of the transition probabilities for each
node,

H[v] = −
∑
u

Pr [u|v] log Pr [u|v] ,

and then pass it through the following monotonically decreasing function,

f(x) =
log β

log(β + ex))
.

Note that f(0) = log(β)/ log(β + 1) and that f(x) goes to zero, as x goes to infinity.
We define,

cv = f (H[v]) .

Next we define,

dv =
{

(1− cv)×
√
H[v] the vertex v is labeled

0 the vertex v is unlabled

Finally, to ensure proper normalization of pcont
v , pinj

v and pabnd
v , we define,

zv = max(cv + dv, 1) ,

and

pcont
v =

cv
zv

; pinj
v =

dv
zv

; pabnd
v = 1− pcont

v − pinj
v .

Thus, abandonment occurs only when the continuation and injection probabilities are
low enough. This is most likely to happen at unlabeled nodes with high degree. Once
the random walk reaches such a node (v), the walk is terminated with probability
pabnd
v . This, in effect, prevents the Adsorption algorithm from propagating informa-

tion through high degree nodes. We note that the probabilities pinj
v , pcont

v and pabnd
v for

node v may be set with heuristics other than the fan-out entropy heuristics shown above
to suit specific application contexts.

3 Analysis of the Adsorption Algorithm

Our next goal is to find an objective function that the Adsorption algorithm minimizes.
Our starting point is line 6 of Algorithm 1. We note that when the algorithm converges,
both sides of the assignment operator equal each other before the assignment takes
place. Thus when the algorithm terminates, we have for all v ∈ V :

Ŷv = pinj
v ×Yv + pcont

v × 1
Nv

∑
u

WuvŶu + pabnd
i × r ,

where
Nv =

∑
v′

Wv′v .

The last set of equalities is equivalent to,

Gv

(
{Ŷu}u∈V

)
= 0 for v ∈ V , (3)

where we define,

Gv

(
{Ŷu}u∈V

)
= pinj

v ×Yv + pcont
v × 1

Nv

∑
u

WuvŶu + pabnd
i × r− Ŷv .

Now, if the Adsorption algorithm was minimizing some objective function (denoted by
Q
(
{Ŷu}u∈V

)
), the termination condition of Eq. (3) was in fact a condition on the

vector of its partial derivatives where we would identify

Gv =
∂

∂Ŷv

Q . (4)

Since the functions Gv are linear (and thus has continuous derivatives), necessary con-
ditions for the existence of a functionQ such that (4) holds is that the derivatives of Gv
are symmetric [8], that is,

∂

∂Ŷv

Gu =
∂

∂Ŷu

Gv .

Computing and comparing the derivatives we get,

∂

∂Ŷu

Gv = pcont
v

(
Wuv

Nv
− δu,v

)
6= pcont

u

(
Wvu

Nu
− δu,v

)
=

∂

∂Ŷv

Gu ,

which is true since in general Nu 6= Nv and pcont
v 6= pcont

u . We conclude:

Theorem 1. There does not exists a functionQ with continuous second partial deriva-
tives such that the Adsorption algorithm convergences when gradient ofQ are equal to
zero.

In other words, we searched for a (well-behaved) functionQ such that its local optimal
would be the output of the Adsorption algorithm, and showed that this search will al-
ways fail. We use this negative results to define a new algorithm, which builds on the
Adsorption algorithm and is optimizing a function of the unknowns Ŷv for v ∈ V .

4 New Algorithm: Modified Adsorption (MAD)

Our starting point is Sec. 2.2 where we assume to have been given a weighted-graph
G = (V,E,W) and a matrix Y ∈ Rn×(m+1)

+ and are seeking for a labeling-matrix
Ŷ ∈ Rn×(m+1)

+ . In this section it is more convenient to decompose the matrices Y and
Ŷ into their columns, rather than rows. Specifically, we denote by Yl ∈ Rn+ the lth
column of Y and similarly by Ŷl ∈ Rn+ the lth column of Ŷ. We distinguish the rows
and columns of the matrices Y and Ŷ using their indices, the columns are indexed with
the label index l, while the rows are indexed are with a vertex index v (or u).

We build on previous research [3, 17, 11] and construct an objective that reflects
three requirements as follows. First, for the labeled vertices we like the output of the
algorithm to be close to the a-priori given labels, that is Yv ≈ Ŷv . Second, for pair
of vertices that are close according to the input graph, we would like their labeling
to be close, that is Ŷu ≈ Ŷv if Wuv is large. Third, we want the output to be as
uninformative as possible, this serves as additional regularization, that is Ŷv ≈ r. We
now further develop the objective in light of the three requirements.

We use the Euclidian distance to measure discrepancy between two quantities, and
start with the first requirement above,∑

v

pinj
v

∑
l

(
Yvl − Ŷvl

)2

=
∑
l

∑
v

pinj
v

(
Yvl − Ŷvl

)2

=
∑
l

(
Yl − Ŷl

)>
S
(
Yl − Ŷl

)
,

where we define the diagonal matrix S ∈ Rn×n and Svv = pinj
v if vertex v is labeled

and Svv = 0 otherwise. The matrix S captures the intuition that for different vertices
we enforce the labeling of the algorithm to match the a-priori labeling with different
extent.

Next, we modify the similarity weight between vertices to take into account the
difference in degree of various vertices. In particular we define W

′

vu = pcont
v ×Wvu.

Thus, a vertex u will not be similar to a vertex v if either the input weights Wvu are
low or the vertex v has a large-degree (pcont

v is low). We write the second requirement
as,∑

v,u

W
′

vu

∥∥∥Ŷv − Ŷu

∥∥∥2

=
∑
v,u

W
′

vu

∑
l

(
Ŷvl − Ŷul

)2

=
∑
l

∑
v,u

W
′

vu

(
Ŷvl − Ŷul

)2

=
∑
l

∑
v

(∑
u

W
′

vu

)
‖Ŷvl‖2 +

∑
l

∑
u

(∑
v

W
′

vu

)
‖Ŷul‖2 − 2

∑
l

∑
u,v

W
′

vuŶulŶvl

=
∑
l

Ŷ>l LŶl ,

where,
L = D + D̄−W

′
−W

′>
,

and D, D̄ are n× n diagonal matrices with

Dvv =
∑
u

W
′

uv , D̄vv =
∑
u

W
′

vu .

Finally we define the matrix R ∈ Rn×(m+1)
+ where the vth row of R equals pabnd

v ×
r (we define r in Sec 2.2). In other words the first m columns of R equal zero, and the
last (m+1th column) equal the elements of pabnd

v . The third requirement above is thus
written as, ∑

vl

(
Ŷvl −Rvl

)2

=
∑
l

∥∥∥Ŷl −Rl

∥∥∥2

.

We combine the three terms above into a single objective (which we would like to
minimize), giving to each term a different importance using the weights µ1, µ2, µ3.

C(Ŷ) =
∑
l

[
µ1

(
Yl − Ŷl

)>
S
(
Yl − Ŷl

)
+ µ2ŶT

l L Ŷl + µ3

∣∣∣∣∣∣Ŷl −Rl

∣∣∣∣∣∣2
2

]
.(5)

The objective in Equation 5 is similar to the Quadratic Cost Criteria [3], with the ex-
ception that the matrices S and L have different constructions. We remind the reader
that Ŷl,Yl,Rl are the lth columns (each of size n × 1) of the matrices Ŷ,Y and R
respectively.

4.1 Solving the Optimization Problem

We now develop an algorithm to optimize (5) similar to the quadratic cost criteria [3].
Differentiating Equation 5 w.r.t. Ŷl we get,

1
2
δC(Ŷ)

δŶl

= µ1S(Ŷl −Yl) + µ2LŶl + µ3(Ŷl −Rl)

= (µ1S + µ2L + µ3I)Ŷl − (µ1SYl + µ3Rl) . (6)

Differentiating once more we get,

1
2
δC(Ŷ)

δŶlδŶl

= µ1S + µ2L + µ3I ,

and since both S and L are symmetric and positive semidefinite matrices (PSD), we get
that the Hessian is PSD as well. Hence, the optimal minima is obtained by setting the
first derivative (i.e. Equation (6)) to 0 as follows,

(µ1S + µ2L + µ3I) Ŷl = (µ1SYl + µ3Rl) .

Hence, the new labels (Ŷ) can be obtained by a matrix inversion followed by matrix
multiplication. However, this can be quite expensive when large matrices are involved.
A more efficient way to obtain the new label scores is to solve a set of linear equations
using Jacobi iteration which we now describe.

4.2 Jacobi Method

Given the following linear system (in x)

Mx = b

the Jacobi iterative algorithm defines the approximate solution at the (t+1)th iteration
given the solution at tth iteration as follows,

x
(t+1)
i =

1
Mii

bi −∑
j 6=i

Mijx
(t)
j

 . (7)

We apply the iterative algorithm to our problem by substituting x = Ŷl, M = µ1S +
µ2L + µ3I and b = µ1SYl + µ3Rl in (7),

Ŷ(t+1)
vl =

1
Mvv

µ1(SYl)v + µ3Rvl −
∑
u6=v

MvuŶ
(t)
ul

(8)

Let us compute the values of (SYl)i, Mij(j 6=i) and Mii. First,

Mvu(v 6=u) = µ1Svu + µ2Lvu + µ3Ivu .

Note that since S and I are diagonal, we have that Svu = 0 and Ivu = 0 for u 6= v.
Substituting the value of L we get,

Mvu(v 6=u) = µ2Lvu = µ2

(
Dvu + D̄vu −W

′

vu −W
′

uv

)
,

and as before the matrices D and D̄ are diagonal and thus Dvu + D̄vu = 0. Finally,
substituting the values of W

′

vu and W
′

uv we get,

Mvu(v 6=u) = −µ2 × (pcont
v ×Wvu + pcont

u ×Wuv) . (9)

We now compute the second quantity,

(SYl)vu = SvvYvv +
∑
t 6=v

SvtYtu = pinj
v ×Yvv ,

where the second term equals zero since S is diagonal. Finally, the third term,

Mvv = µ1Svv + µ2Lvv + µ3Ivv
= µ1 × pinj

v + µ2(Dvv + D̄vv −W
′

vv −W
′

vv) + µ3

= µ1 × pinj
v + µ2

∑
u6=v

(pcont
v Wvu + pcont

u Wuv) + µ3 .

Plugging the above equations into (8) and using the fact that the diagonal elements of
W are zero, we get,

Ŷ(t+1)
v =

1
Mvv

(
µ1p

inj
v Yv + µ2

∑
u

(
pcont
v Wvu + pcont

u Wuv

)
Ŷ(t)
u + µ3 p

abnd
v r

)
. (10)

We call the new algorithm MAD for Modified-Adsorption and it is summarized in Al-
gorithm 2. Note that for graphs G that are invariant to permutations of the vertices, and
setting µ1 = 2× µ2 = µ3 = 1, MAD reduces to the Adsorption algorithm.

4.3 Convergence

A sufficient condition for the iterative process of Equation (7) to converge is that M is
strictly diagonally dominant [10], that is if,

|Mvv| >
∑
u6=v

|Mvu| for all values of v

Algorithm 2 Modified Adsorption (MAD) Algorithm
Input:
- Graph: G = (V,E,W)
- Prior labeling: Yv ∈ Rm+1 for v ∈ V
- Probabilities: pinj

v , pcont
v , pabnd

v for v ∈ V
Output:
- Label Scores: Ŷv for v ∈ V
1: Ŷv ← Yv for v ∈ V {Initialization}
2: Mvv ← µ1 × pinj

v + µ2

P
u6=v(pcont

v Wvu + pcont
u Wuv) + µ3

3: repeat
4: Dv ←

X
u

`
pcont

v Wvu + pcont
u Wuv

´
Ŷu

5: for all v ∈ V do
6: Ŷv ← 1

Mvv

`
µ1 × pinj

v ×Yv + µ2 ×Dv + µ3 × pabnd
v × r

´
7: end for
8: until convergence

We have,

|Mvv| −
∑
u6=v

|Mvu| = µ1×pinj
v + µ2×

∑
u 6=v

(
pcont
v ×Wvu + pcont

u ×Wuv

)
+ µ3 −

µ2×
∑
u6=v

(
pcont
v ×Wvu + pcont

u ×Wuv

)
= µ1×pinj

v + µ3 (11)

Note that pinj
v ≥ 0 for all v and that µ3 is a free parameter in (11). Thus we can

guarantee a strict diagonal dominance (and hence convergence) by setting µ3 > 0.

5 Extensions: Non-Mutually Exclusive Labels

In many learning settings, labels are not mutually exclusive. For example, in hierarchi-
cal classification, labels are organized in a tree. In this section, we extend the MAD
algorithm to handle dependence among labels. This can be easily done using our new
formulation which is based on objective optimization. Specifically, we shall add addi-
tional terms to the objective for each pair of dependent labels. Let C be am×mmatrix
where m is the number of labels (excluding the dummy label) as before. Each entry,
Cll′ , of this matrix C represents the dependence or similarity among the labels l and l

′
.

By encoding dependence in this pairwise fashion, we can capture dependencies among
labels represented as arbitrary graphs. The extended objective is shown in Equation 12.

C(Ŷ) =
∑
l

[
µ1

(
Yl − Ŷl

)>
S
(
Yl − Ŷl

)
+ µ2ŶT

l L Ŷl + µ3

∣∣∣∣∣∣Ŷl −Rl

∣∣∣∣∣∣2
2

+µ4

∑
i

∑
l,l′

Cll′ (Ŷil − Ŷil′)
2

 (12)

The last term in Equation 12 penalizes the algorithm if similar labels (as determined by
the matrix C) are assigned different scores, with severity of the penalty controlled by
µ4. Now, analyzing the objective in Equation 12 in the manner outlined in Section 4,
we arrive at the update rule shown in Equation 13.

Ŷ(t+1)
vl =

1
Ml

vv

(
µ1p

inj
v Yvl + µ2

∑
u

(
pcont
v Wvu + pcont

u Wuv

)
Ŷ(t)
ul +

µ3 p
abnd
v rl + µ4

∑
l′

Cll′ Ŷ
(t)

vl′

 (13)

where,

Ml
vv = µ1 × pinj

v + µ2 ×
∑
u6=v

(pcont
v Wvu + pcont

u Wuv) + µ3 + µ4

∑
l′

Cll′

Replacing Line 6 in MAD (Algorithm 2) with Equation 13, we end up with a new
algorithm: Modified Adsorption for Dependent Labels (MADDL). In Section 6.4, we
shall use MADDL to obtain smooth ranking for sentiment classification.

6 Experimental Results

We compare MAD with various state-of-the-art learning algorithms on two tasks, text
classification (Sec. 6.1) and sentiment analysis (Sec. 6.2), and demonstrate its effec-
tiveness. In Sec. 6.3, we also provide experimental evidence showing that MAD is
quite insensitive to wide variation of values of its hyper-parameters. In Sec. 6.4, we
present evidence showing how MADDL can be used to obtain smooth ranking for senti-
ment prediction, a particular instantiation of classification with non-mutually exclusive
labels. For the experiments reported in this section involving Adsorption, MAD and
MADDL, the a-priori label matrix Y was column-normalized so that all labels have
equal overall injection score. Also, the dummy label was ignored during evaluation as
its main role is to add regularization during learning phase only.

6.1 Text Classification

World Wide Knowledge Base (WebKB) is a text classification dataset widely used for
evaluating transductive learning algorithms. Most recently, the dataset was used by
Subramanya and Bilmes [11], who kindly shared their preprocessed complete WebKB
graph with us. There are a total of 4, 204 vertices in the graph, with the nodes labeled
with one of four categories: course, faculty, project, student. A K-NN graph is created
from this complete graph by retaining only top K neighbors of each node, where the
value of K is treated as a hyper-parameter.

We follow the experimental protocol in [11]. The dataset was randomly partitioned
into four sets. A transduction set was generated by first selecting one of the four splits at
random and then sampling nl documents from it; the remaining three sets are used as the

Class SVM TSVM SGT LP AM Adsorption MAD
course 46.5 43.9 29.9 45.0 67.6 61.1 67.5
faculty 14.5 31.2 42.9 40.3 42.5 52.8 42.2
project 15.8 17.2 17.5 27.8 42.3 52.6 45.5
student 15.0 24.5 56.6 51.8 55.0 39.8 59.6
average 23.0 29.2 36.8 41.2 51.9 51.6 53.7

Table 1. PRBEP for the WebKB data set with nl = 48 training and 3148 testing instances. All
results are averages over 20 randomly generated transduction sets. The last row is the macro-
average over all the classes. MAD is the proposed approach. Results for SVM, TSVM, SGT, LP
and AM are reproduced from Table 2 of [11].

test set for evaluation. This process was repeated 21 times to generate as many training-
test splits. The first split was used to tune the hyper-parameters, with search over the
following:K ∈ {10, 50, 100, 500, 1000, 2000, 4204}, µ2, µ3 ∈ {1e−8, 1e−4, 1e−2, 1,
10, 1e2, 1e3}. The value of µ1 was set to 1 for this experiment. Both for Adsorption
and MAD, the optimal value of K was 1, 000. Furthermore, the optimal value for
the other parameters were found to be µ2 = µ3 = 1. As in previous work [11], we
use Precision-Recall Break Even Point (PRBEP) [9] as the evaluation metric. Same
evaluation measure, dataset and the same experimental protocol makes the results re-
ported here directly comparable to those reported previously [11]. For easier readabil-
ity, the results from Table 2 of Subramanya and Bilmes [11] are cited in Table 1 of this
paper, comparing performance of Adsorption based methods (Adsorption and MAD)
to many previously proposed approaches: SVM [6], Transductive-SVM [6], Spectral
Graph Transduction (SGT) [7], Label Propagation (LP) [16] and Alternating Minimiza-
tion (AM) [11]. The first four rows in Table 1 shows PRBEP for individual categories,
with the last line showing the macro-averaged PRBEP across all categories. The MAD
algorithm achieves the best performance overall (for nl = 48).

Performance comparison of MAD and Adsorption for increasing nl are shown in
Figure 1. Comparing these results against Fig. 2 in Subramanya and Bilmes [11], it
seems that MAD outperforms all other methods compared (except AM [11]) for all
values of nl. MAD performs better than AM for nl = 48, but achieves second best
solution for the other three values of nl. We are currently investigating why MAD is
best for settings with fewer labeled examples.

6.2 Sentiment Analysis
The goal of sentiment analysis is to automatically assign polarity scores to text collec-
tions, with a high score reflecting positive sentiment (user likes) and a low score reflect-
ing negative sentiment (user dislikes). In this section, we report results on sentiment
classification in the transductive setting. From Section 6.1 and [11], we observe that
Label Propagation (LP) [16] is one of the best performing L2-norm based transductive
learning algorithm. Hence, we compare the performance of MAD against Adsorption
and LP.

For the experiments in this section, we use a set of 4, 768 user reviews from the
electronics domain [4]. Each review is assigned one of the four scores: 1 (worst), 2,

Fig. 1. PRBEP (macro-averaged) for the WebKB dataset with 3148 testing instances. All results
are averages over 20 randomly generated transduction sets.

3, 4 (best). We create a K-NN graph from these reviews by using cosine similarity
as the measure of similarity between reviews. We created 5 training-test splits from
this data using the process described in Section 6.1. One split was used to tune the
hyper-parameters while the rest were used for training and evaluation. Hyper-parameter
search was carried over the following ranges: K ∈ {10, 100, 500}, µ1 ∈ {1, 100},
µ2 ∈ {1e−4, 1, 10}, µ3 ∈ {1e−8, 1, 100, 1e3}. Precision is used as the evaluation
metric. Comparison of different algorithms for varying number of labeled instances are
shown in Figure 2. From this, we note that MAD and Adsorption outperform LP, while
Adsorption and MAD are competitive

6.3 Parameter Sensitivity

We evaluated the sensitivity of MAD to variations of its µ2 and µ3 hyper-parameters,
with all other hyper-parameters fixed. We used a 2000-NN graph constructed from the
WebKB dataset and a 500-NN graph constructed from the Sentiment dataset. In both
cases, 100 nodes were labeled. We tried three values each for µ2 and µ3, ranging in at
least 3 order of magnitude. For the WebKB, the PRBEP varied between 43.1−49.9 and
for the sentiment data, the precision varied in the range 31.4−36.4 with µ2 ≤ µ3 while
precision dropped to 25 with µ2 > µ3. This underscores the need for regularization in
these models, which is enforced with high µ3. We note that in both cases the algorithm
is less sensitive to the value of µ2 than the value of µ3. In general, we have found that
setting µ3 to one or two order magnitude more than µ2 is a reasonable choice. We have
also found that the MAD algorithm is quite insensitive to variations in µ1. For example
on the sentiment dataset, we tried two values for µ1 ranging two order of magnitude,
with other hyper-parameters fixed. In this case, precision varied in the range 36.2 - 36.3.

Fig. 2. Precision for the Sentiment Analysis dataset with 3568 testing instances. All results are
averages over 4 randomly generated transduction sets.

µ4

0 1 10 100 1e3 1e4
Prediction Loss (L1) at rank 1 0.93 0.93 0.92 0.90 0.90 0.90
Prediction Loss (L1) at rank 2 1.21 1.20 1.12 0.96 0.97 0.97

Table 2. Average prediction loss at ranks 1 & 2 (for various values of µ4) for sentiment prediction.
All results are averaged over 4 runs. See Section 6.4 for details.

6.4 Smooth Ranking for Sentiment Analysis

We revisit the sentiment prediction problem in Section 6.2, but with the additional re-
quirement that ranking of the labels (1, 2, 3, 4) generated by the algorithm should be
smooth i.e. we prefer the ranking 1 > 2 > 3 > 4 over the ranking 1 > 4 > 3 > 2, where
3 > 2 means that the algorithm ranks label 3 higher than label 2. The ranking 1 > 2 >
3 > 4 is smoother as it doesn’t involve rough transition 1 > 4 which is present in 1 > 4
> 3> 2. We use the framework of stating requirements as an objective to be optimized.
We use the MADDL algorithm of Sec. 5 initializing the matrix C as follows (assuming
that labels 1 and 2 are related, while labels 3 and 4 are related):

C12 = C21 = 1 , C34 = C43 = 1

with all other entries in matrix C set to 0. Such constraints (along with appropriate µ4

in Equation (12)) will force the algorithm to assign similar scores to dependent labels,
thereby assigning them adjacent ranks in the final output. MAD and MADDL were
then used to predict ranked labels for vertices on a 1000-NN graph constructed from
the sentiment data used in Sec. 6.2, with 100 randomly selected nodes labeled. For this
experiment we set µ1 = µ2 = 1, µ3 = 100. The L1-loss between the gold label and
labels predicted at ranks r = 1, 2 for increasing values of µ4 are given in Table 2. Note
that, MADDL with µ4 = 0 corresponds to MAD. From Table 2 we observe that with

1
2

3
4

1
2

3
4

0

2000

4000

Label 1

Count of Top Predicted Pair in MAD Output

Label 2

Fig. 3. Plot of counts of top predicted
label pairs (order ignored) in MAD’s
predictions with µ1 = µ2 = 1, µ3 =
100.

1
2

3
4

1
2

3
4

0

5000

10000

Label 1

Count of Top Predicted Pair in MADDL Output

Label 2

Fig. 4. Plot of counts of top label pairs
(order ignored) in MADDL’s predic-
tions (Section 5), with µ1 = µ2 = 1,
µ3 = 100, µ4 = 1e3.

increasing µ4, MADDL is ranking at r = 2 a label which is related (as per C) to the
top ranked label at r = 1, but at the same time maintain the quality of prediction at
r = 1 (first row of Table 2), thereby ensuring a smoother ranking. From Table 2, we
also observe that MADDL is insensitive to variations of µ4 beyond a certain range. This
suggests that µ4 may be set to a (high) value and that tuning it may not be necessary.

Another view of the same phenomenon is shown in Fig. 3 and Fig. 4. In these
figures, we plot the counts of top predicted label pair (order of prediction is ignored
for better readability) generated by the MAD and MADDL algorithms. By comparing
these two figures we observe that label pairs (e.g. (2,1) and (4,3)) favored by C (above)
are more frequent in MADDL’s predictions than in MAD’s. At the same time, non-
smooth predictions (e.g. (4, 1)) are virtually absent in MADDL’s predictions while they
are quite frequent in MAD’s. These clearly demonstrate MADDL’s ability to generate
smooth predictions in a principled way, and more generally the ability to handle data
with non-mutually exclusive or dependent labels.

7 Related Work
LP [16] is one of the first graph based semi-supervised algorithms. Even though there
are several similarities between LP and MAD, there are important differences: (1) LP
doesn’t allow the labels on seeded nodes to change (while MAD does). As was pointed
out previously [3], this can be problematic in case of noisy seeds. (2) There is no way for
LP to express label uncertainty about a node. MAD can accomplish this by assigning
high score to the dummy label. More recently, a KL minimization based algorithm
was presented in [11]. Further investigation is necessary to determine the merits of
each approach. For a general introduction to the area of graph-based semi-supervised
learning, the reader is referred to a survey by Zhu [15].

8 Conclusion
In this paper we have analyzed the Adsorption algorithm [1] and proposed a new graph
based semi-supervised learning algorithm, MAD. We have developed efficient (itera-
tive) solution to solve our convex optimization based learning problem. We have also
listed the conditions under which the algorithm is guaranteed to converge. Transition
to an optimization based learning algorithm allows us to easily extend the algorithm
to handle data with non-mutually exclusive labels, resulting in the MADDL algorithm.
We have provided experimental evidence demonstrating effectiveness of our proposed
methods. As part of future work, we plan to evaluate the proposed methods further
and apply the MADDL method in problems with dependent labels (e.g. Information
Extraction).

Acknowledgment
This research is partially supported by NSF grant #IIS-0513778. The authors would like to thank
F. Pereira and D. Sivakumar for useful discussions.

References
1. S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran, and M. Aly.

Video suggestion and discovery for youtube: taking random walks through the view graph.
In WWW, 2008.

2. M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework
for learning from labeled and unlabeled examples. JMLR, 7:2399–2434, 2006.

3. Y. Bengio, O. Delalleau, and N. Roux. Semi-Supervised Learning, chapter Label Propoga-
tion and Quadratic Criterion, 2007.

4. J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In ACL, 2007.

5. P. Indyk and J. Matousek. Low-distortion embeddings of finite metric spaces. Handbook of
Discrete and Computational Geometry, 2004.

6. T. Joachims. Transductive inference for text classification using support vector machines. In
ICML, 1999.

7. T. Joachims. Transductive learning via spectral graph partitioning. In ICML, 2003.
8. V. J. Katz. The history of stokes’ theorem. Mathematics Magazine, 52(3):146–156, 1979.
9. V. Raghavan, P. Bollmann, and G. Jung. A critical investigation of recall and precision as

measures of retrieval system performance. ACM TOIS, 7(3):205–229, 1989.
10. Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial Math., 2003.
11. A. Subramanya and J. Bilmes. Soft-Supervised Learning for Text Classification. In EMNLP,

2008.
12. M. Szummer and T. Jaakkola. Partially labeled classification with markov random walks.

NIPS, 2002.
13. P. P. Talukdar, J. Reisinger, M. Pasca, D. Ravichandran, R. Bhagat, and F. Pereira. Weakly

supervised acquisition of labeled class instances using graph random walks. In EMNLP,
2008.

14. J. Wang, T. Jebara, and S. Chang. Graph transduction via alternating minimization. In ICML,
2008.

15. X. Zhu. Semi-supervised learning literature survey. 2005.
16. X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propaga-

tion. Technical report, CMU CALD tech report, 2002.
17. X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and

harmonic functions. ICML, 2003.

