A Rate-Distortion One-Class Model and its Applications to Clustering

Koby Crammer Partha Pratim Talukdar Fernando Pereira¹

University Of Pennsylvania

¹Currently at Google, Inc.
One Class Prediction

- Problem Statement
 - Predict a coherent superset of a small set of positive instances.

- Applications
 - Document Retrieval
 - Information Extraction
 - Gene Expression

- Prefer high precision over high recall.
Previous Approaches

(Ester et al. 1996): Density based non-exhaustive clustering algorithm. Unfortunately, density analysis is hard in high dimension.

(Tax & Duin 1999): Find a small ball that contains as many of the seed examples as possible. Most of the points are considered relevant, a few outliers are dropped.

(Crammer & Chechik 2004): Identify a small subset of relevant examples, leaving out most less relevant ones.

(Gupta & Ghosh 2006): Modified version of (Crammer & Chechik 2004).
Our Approach: A Rate-Distortion One-Class Model

- Express the one-class problem as lossy coding of each instance into instance-dependent codewords (clusters).

- In contrast to previous methods, use more codewords than instances.

- Regularization via sparse coding: each instance has to be assigned to one of only two codewords.
Coding Scheme

- Instances can be coded as themselves, or as a shared codeword ("0") represented by the vector \mathbf{w}.
Notation

$p(x)$ Prior on point x.
$q(0|x)$ Probability of x being encoded by the joint code ("0").
$q(x|x)$ Probability of self-coding point x.
v_x Vector representation of point x.
w Centroid vector of the single class.
$D(v_x \| w)$ Cost (distortion) suffered when point x is assigned to the one class whose centroid is w.
Rate & Distortion Tradeoff

All in one
High Compression (Low Rate)
High Distortion

All alone
Low Compression (High Rate)
Low Distortion

A Rate-Distortion One-Class Model and its Applications to Clustering (Crammer et al.)
Rate-Distortion Optimization

Random variables:

- \(X \): instance to be coded;
- \(T \): code for an instance, either \(T = 0 \) (shared codeword) or \(T = x > 0 \) (instance-specific codeword).

Rate: Amount of compression from the source \(X \) to the code \(T \), measured by the mutual information \(I(T; X) \)

Distortion: How well on average the centroid \(w \) serves as a proxy to the instances \(v_x \).

Objective (\(\beta > 0 \) tradeoff parameter):

\[
\min_{w, \{q(0|x)\}} \quad \text{Rate} + \beta \times \text{Distortion}
\]
Self-Consistent Equations

Solving the Rate-Distortion optimization in the OC setting, we get the following three self-consistent equations, as in IB.

1. \[q(0) = \sum_x p(x) q(0|x) \]

2. \[q(0|x) = \min \left\{ q(0) \frac{e^{-\beta D(v_x \| w)}}{p(x)}, 1 \right\} \]

3. \[w = \sum_x q(x|0) v_x \]
One Class Rate Distortion Algorithm (OCRD)

We optimize the rate-distortion tradeoff following the Blahut-Arimoto and Information bottleneck (IB) algorithms, alternating between the following two steps:

1. Compute the centroid location \(\mathbf{w} \) as the weighted average of instances \(\mathbf{v}_x \) with weights proportional to \(q(0|x)p(x) \)

\[
\mathbf{w} = \sum_x q(x|0) \mathbf{v}_x
\]

2. Fix \(\mathbf{w} \) and optimize for the coding policy \(q(0|x), q(0) \)
Step 2: Finding a Coding Policy

Let $C = \{x : q(0|x) = 1\}$ be the set of points assigned to the one class.

Lemma

Let $s(x) = \beta d_x + \log(p(x))$

then there is θ such that $x \in C$ if and only if $s(x) < \theta$

The lemma allows us to develop a deterministic algorithm to solve for $q(0|x)$ for $x = 1, \ldots, m$ simultaneously in time complexity $O(m \log m)$
Phase Transitions in the Optimal Solution
Multiclass Extension
Multiclass Coding Scheme

• We have m points and k centroids. The natural extension doesn’t work because $1 - q(x|x)$ does not specify which centroid x should be assigned to.
Multiclass Coding Scheme

- We have m points and k centroids. The natural extension doesn’t work because $1 - q(x|x)$ does not specify which centroid x should be assigned to.

- Our Multiclass Coding Scheme:
Multiclass Rate-Distortion Algorithm (MCRD)

MCRD alternates between the following two steps:

1. Use the OCRD algorithm to decide whether we want to self-code a point or not.
Multiclass Rate-Distortion Algorithm (MCRD)

MCRD alternates between the following two steps:

1. Use the OCRD algorithm to decide whether we want to self-code a point or not.

2. Use a hard clustering algorithm (sIB) to clusters the points which we decided not to self-code in the first step. Then iterate.
Experimental Results

1. One Class Document Classification.
2. Multiclass Clustering of synthetic data.
3. Multiclass Clustering of real-world data.
PR plots for two categories of the Reuters-21678 data set using OCRD and two previously proposed methods (OC-IB & OC-Convex). During training, each of the algorithms searched for a meaningful subset of the training data and generated a centroid. The centroid was then used to label the test data, and to compute recall and precision.
Clusterings produced by MCRD on a synthetic data set for two values of β with $k = 5$. There were 900 points, 400 sampled from four Gaussian distributions, 500 sampled from a uniform distribution. Self-coded points are marked by black dots, coded points by colored dots and cluster centroids by bold circles.
MULTICLASS: UNSUPERVISED DOCUMENT CLUSTERING

PR plots for sIB and MCRD ($\beta = 1.6$) on the Multi5_1 dataset (2000 word vocabulary). These plots show that better clustering can be obtained if the algorithm is allowed to selectively leave out data points (through self-coding).
CONCLUSION

- We have cast the problem of identifying a small coherent subset of data as an optimization problem that trades off between class size (compression) and accuracy (distortion).
CONCLUSION

• We have cast the problem of identifying a small coherent subset of data as an optimization problem that trades off between class size (compression) and accuracy (distortion).

• We also show that our method allows us to move from one-class to standard clustering, but with background noise left out (the ability to “give up” some points).
CONCLUSION

• We have cast the problem of identifying a small coherent subset of data as an optimization problem that trades off between class size (compression) and accuracy (distortion).

• We also show that our method allows us to move from one-class to standard clustering, but with background noise left out (the ability to “give up” some points).

• Extend to more general instance spaces and distortions: graphs, manifolds.
THANKS!